The Flow Set with Partial Order

نویسندگان

  • Alper Atamtürk
  • Muhong Zhang
چکیده

The flow set with partial order is a mixed-integer set described by a budget on total flow and a partial order on the arcs that may carry positive flow. This set is a common substructure of resource allocation and scheduling problems with precedence constraints and robust network flow problems under demand/capacity uncertainty. We give a polyhedral analysis of the convex hull of the flow set with partial order. Unlike for the flow set without partial order, cover-type inequalities based on partial order structure are a function of a lifting sequence. We study the lifting sequences and describe structural results on the lifting coefficients for general and simpler special cases. We show that all lifting coefficients can be computed in polynomial time by solving maximum weight closure problems in general. For the special case of induced-minimal covers, we give a sequencedependent characterization of the lifting coefficients. We prove, however, if the partial order is defined by an arborescence, then lifting is sequence-independent and all lifting coefficients can be computed in linear time. Moreover, if the partial order is defined by a path (total order), then the coefficients can be expressed explicitly. We also give a complete polyhedral description of the flow set with partial order for the polynomially-solvable total order case. We show that finding an optimal lifting order for a given induced-minimal cover and a given fractional solution is a submodular optimization problem, which is solved greedily. Finally, we present preliminary computational results with a cutting-plane algorithm based on the lifting and separation results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical study of flow field and heat transfer of a non-Newtonian fluid in an axisymmetric channel with a permeable wall

In this study, the momentum and energy equations of laminar flow of a non-Newtonian fluid are solved in an axisymmetric porous channel using the least square and Galerkin methods. The bottom plate is heated by an external hot gas, and a coolant fluid is injected into the channel from the upper plate. The arising nonlinear coupled partial differential equations are reduced to a set of coupled no...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Analytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid

In this paper, the differential transform method and Padé approximation (DTM-Padé) is applied to obtain the approximate analytical solutions of the MHD flow and heat transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations...

متن کامل

Unsteady Magneto Hydro Dynamic Flow of a Second Order Fluid over an Oscillating Sheet with a Second Order Slip Flow Model

Unsteady slip-flow of second grade non-Newtonian electrically conducting fluid over an oscillating sheet has been considered and solved numerically. A second-order slip velocity model is used to predict the flow characteristic past the wall. With the assumption of infinite length in x-direction, velocity of the fluid can be assumed as a function of y and t, hence, with proper variable change pa...

متن کامل

Analytical and Numerical Studies on Hydromagnetic Flow of Boungiorno Model Nanofluid over a Vertical Plate

MHD boundary layer flow of two phase model nanofluid over a vertical plate is investigated both analytically and numerically. A system of governing nonlinear partial differential equations is converted into a set of nonlinear ordinary differential equations by suitable similarity transformations and then solved analytically using homotopy analysis method and numerically by the fourth order Rung...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2008